Jednoliko kružno kretanje

Obrtno kretanje – tijelo se obrće oko „ose obrtanja“ (osa obrtanja – zamišljen pravac kroz težište tijela).

Kružno kretanje – kretanje tijela (najčešće „materijalne tačke“ – težište tijela – zamišljena tačka tijela u kojoj kao da je smještena cjelokupna masa tijela) po kružnoj liniji – kružnici.
I kod obrtnog i kod kružnog kretanja jedna od značajnijih veličina za matematički (algebarski) opis tog kretanja je u g l o v n a    b r z i n a – ω (omega) – pređeni (opisani) ugao u jedinici vremena (najčeššća jedinica vremena je jedna sekunda – 1s).
Ako za neko vrijeme t , tačka pređe (opiše) ugao    onda je pređeni ugao u jedinici vremena:

1.)   Kako se kod kružnog kretanja često posmatra i vrijeme jednog punog obrta T ( T – vrijeme jednog punog obrta, često se naziva i „period“ punog obrta) nekom brzinom v po kružnici dužine 2rπ ili uglovnom brzinom ω za puni ugao 2π (izražen u radijanima) onda su za matematički (algebarski) opis kružnog kretanja značajne veličine:

2.)    i    Iz jednakosti 2r π = v·T imamo 2π/T = v/r = ω , iz koje slijedi da je: ω ·r = v , te pređeni ugao u jedinici vremena ω možemo iskazati na još jedan (algebarski) način:

3.)    Iz ove produžene jednakosti možemo iskazati svaku pojedinačnu veličinu koju želimo (ω , v , r , , t , T , 2π ) pomoću ostalih veličina u toj jednakosti. Fizičke veličine,
po svojoj vrijednosti međusobnih relativnih odnosa,
slijede matematičke zakonitosti međusobnih relativnih vrijednosti,
odnosa matematičkih (algebarskih i geometrijskih) veličina.

4.)     Također, iz ove produžene jednakosti iskažite posebno koju god želite veličinu. Zabavljajte se i ”igrajte se jednakostima”, iznenadit će vas “neočekivana rješenja” i nove spoznaje. Pod korijenom je veličina koju koriste ”relativisti”.

Uz poznate formule imate i “produžetke” (moje formule i moje “novosti”), istražujte ih, provjeravajte ih, i pišite svoje vlastite “naučne članke” (produbljujući nove spoznaje).  (ar – radijalno ubrzanje, v – prosječna, srednja brzina kretanja (na primjer Zemlje oko Sunca), v -“linijska brzina”, a0 – linearno ubrzanje;
γ = 6,67259∙10-11Nm2kg-2   ,  v∙T = 2rπ = nvtπ = ctπ.

Radijalno ubrzanje (kod Keplerovih zakona je to gravitaciono ubrzanje) i linearno ubrzanje (kod Keplerovih zakona je to tangencijalno ubrzanje) ne mijenjaju se istom brzinom. U tome “vidim” jedan od uzroka kretanja planeta po eliptičnim putanjama (različitim brzinama) tokom kretanja po elipsi. Centri-fugalna i centri-petalna sila kod eliptičnih kretanja tijela nisu jednake!

 , Hajgensova formula:        i   ,

a ovo je već “moj patent”: 2r = ct ,            i  

(to nema nigdje drugo osim u mojim tekstovima, dakle nema u udžbenicima fizike).

 PA =vt_v   i PC = ct , PT = PB = vt. Čitajte, provjeravajte, istražujte.  .

Jednolika i jednako promjenjiva, pravolinijska i kružna, oscilatorna i talasna, moguće je tretirati na jednoobrazan način. Šta ćemo “korigovati” kod Njutna, a šta kod Ajnštajna formulisat će “mlađi od mene”. “Relativistička algebra” daje temelj za pomirenje (kvantne i talasne) “Njutnove” i “Ajnštajnove” fizike. Relativizirajte sile i akceleracije, a ne mase, prostor i vrijeme!

Za navedene relativne odnose među veličinama jednolikog kružnog kretanja važno je shvatiti da su tačne (istinite) za uslove „ravnoteže sila i kretanja“ („stabilno stanje“), odnosno , vrijede za „trenutne vrijednosti jednako promjenljivih kretanja” („ trenutna promjenljiva stanja“).
Za sljedeće relacije: mv2∙2a0 = mc2 ∙ar ) molim mlade i „bistrooke“ (buduće profesore matematike i fizike) – pomozite mi u razmatranju i analizi navedenih relacija.

I najstručnijem poznavaocu jednolikih i jednakopromjenljivih (pravolinijskih ili kružnih) kretanja ponekad treba skrenuti pažnju na jednostavne proporcije:
2r : c = c : a0 = t , 2r : v = v : ar/2 = n∙t.

 Ovaj omjer linearnog, radijalnog i uglovnog ubrzanja nađoh pribilježenog u starim slikama (ovdje ga ubacujem samo da ga ne zaboravim u potpunosti, a više se ne sjećam ni kad ni kako sam došao do ove jednakosti?!).

Najjednostavniju povezanost sa veličinama iz inercijalnih kretanja naći ćete uz pomoć ove jednakosti:

U ovoj produženoj jednakosti sa 2t’ označena je Ajnštajnova, a ne Lorentzova veličina (koja se koristi sa istom oznakom) .

htt

Pročitaj i ovaj dodatak

Advertisements
Ovaj unos je objavljen u Nekategorizirano, Prostor i vrijeme, Specijalna teorija relativnosti i označen , , , , , , , . Zabilježite trajni link.

1 odgovor na Jednoliko kružno kretanje

  1. Sprečo kaže:

    Mnogi se sasvim nepotrebno “prepadnu” kada vide algebarki ikaz c/a = t, v/a =t_v jr neće da upamte kako se sa oznakom c ne mora označavati brzina svjetlosti, već to može biti bilo koja i bilo kolikabrzina c = n v.

Komentariši

Upišite vaše podatke ispod ili kliknite na jednu od ikona da se prijavite:

WordPress.com logo

You are commenting using your WordPress.com account. Odjava / Promijeni )

Twitter slika

You are commenting using your Twitter account. Odjava / Promijeni )

Facebook fotografija

You are commenting using your Facebook account. Odjava / Promijeni )

Google+ photo

You are commenting using your Google+ account. Odjava / Promijeni )

Povezivanje na %s